On the total domination subdivision numbers in graphs
نویسندگان
چکیده
A set S of vertices of a graph G = (V ,E) without isolated vertex is a total dominating set if every vertex of V (G) is adjacent to some vertex in S. The total domination number γt (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Karami, Khoeilar, Sheikholeslami and Khodkar, (Graphs and Combinatorics, 2009, 25, 727-733) proved that for any connected graph G of order n ≥ 3, sdγt (G) ≤ 2γt (G)− 1 and posed the following problem: Characterize the graphs that achieve the aforementioned upper bound. In this paper we first prove that sdγt (G) ≤ 2α ′(G) for every connected graph G of order n ≥ 3 and δ(G) ≥ 2 where α ′(G) is the maximum number of edges in a matching in G and then we characterize all connected graphs G with sdγt (G) = 2γt (G)−1. MSC: 05C69
منابع مشابه
Total Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کاملTotal perfect codes, OO-irredundant and total subdivision in graphs
Let $G=(V(G),E(G))$ be a graph, $gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$, respectively. A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$. In this paper, we show that if $G$ has a total perfect code, then $gamma_t(G)=ooir(G)$. As a consequence, ...
متن کاملOn the Total Domination Subdivision Numbers of Grid Graphs
A set S of vertices in a graph G(V,E) is called a total dominating set if every vertex v ∈ V is adjacent to an element of S. The total domination number of a graph G denoted by γt(G) is the minimum cardinality of a total dominating set in G. Total domination subdivision number denoted by sdγt is the minimum number of edges that must be subdivided to increase the total domination number. Here we...
متن کاملTotal domination subdivision numbers of graphs
A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the tot...
متن کاملTotal $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کامل